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a b s t r a c t

In this paper, the multidimensional characteristic based upwind scheme (MCB) which has
been recently introduced by the authors is applied to two another benchmark problems
namely flow in a channel with a backward facing step and two-dimensional steady and
unsteady flows past a circular cylinder. Extension of MCB scheme for calculating convec-
tive fluxes on non-Cartesian grids is presented here. For the flow over backward facing
step, obtained results were compared against well-known experimental data and the
results show high accuracy of MCB scheme and faster convergence rate with respect to
conventional CB scheme. In the case of flow over circular cylinder, the flow at steady
and transient regimes is investigated by MCB scheme. Again, the results obtained by
MCB are compared to the other results in the literature and show good agreement with
them. Also, rapid convergence rate of MCB was observed in this case too. It is concluded
that, the genuinely multidimensional characteristic based (MCB) scheme, has been intro-
duced earlier by the authors, is a robust and powerful scheme for modeling incompressible
viscous flows for achieving the high accuracy and remarkable advantage in convergence
rate with respect to conventional characteristic based schemes.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Many numerical methods f or incompressible flows are predominantly based on the pressure correction schemes. The arti-
ficial compressibility method of Chorin [1] can be considered as an alternative among others. In this method, a pseudo-time
derivative of pressure is added to the continuity equation, thus turning the system of governing equations into hyperbolic ones
and it is possible to use time-marching methods for obtaining steady state solutions. In time-marching, the addition of artificial
compressibility has no effect on the steady state results. However, it may affect the convergence process [2]. In pseudo-time
marching, the numerical waves created are used for propagating information throughout the solution domain and driving the
divergence of velocity to zero. Different numerical schemes have been used for discretization of artificial compressibility
equations. Among them, Farmer et al. have used a central scheme with Jameson’s artificial viscosity to prevent the pres-
sure–velocity decoupling [3]. The discretization schemes and solvers developed for artificial compressibility have many
similarities with the methods of compressible flows. Many researchers used Godunov-type schemes to discretize the equa-
tions of artificial compressibility. Rogers et al. [4], Liu et al. [5], Kallinderis et al. [6], and Yuan [7] used Roe’s flux difference
splitting for solution of incompressible flow fields. Their Roe’s averaging approach was applied to artificial compressibility
equations and obtained fluxes in finite-volume discretization are functions of artificial compressibility parameter. Tradition-
ally, the method of characteristics is used primarily for compressible flow calculations. By introducing the pseudo-time
. All rights reserved.
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derivative in Chorin’s formulation, it is possible that the incompressible flow equations be solved by a similar method of char-
acteristics. For the first time Drikakis et al. used one-dimensional characteristic relations to calculate the convective fluxes in
finite-volume discretization for two-dimensional incompressible flow in a curvilinear coordinate system on structured grids
[8]. The method was developed for three-dimensional flows [9] and further developed to incorporate multigrid techniques
[10]. This method was extended by Zhao et al. for simulation of incompressible flows and convection heat transfer on unstruc-
tured two- and three-dimensional grids [11–15]. Flow variables are calculated along characteristics paths in the direction nor-
mal to the surface of a control volume and their initial values are interpolated based on the signs of the corresponding
characteristic speeds. The CB scheme has been used for a broad range of incompressible flow simulations. Siong et al. used
an implicit finite-volume CB method for calculating incompressible flow in porous media on unstructured grids [16]. Drikakis
and Shapiro applied the artificial compressibility method for solving flows with various densities by using a locally one-dimen-
sional characteristic scheme [17,18]. Other case studies of CB schemes in conjunction with artificial compressibility for mod-
eling incompressible flow can be found in Refs. [19–23].

In all of the examples in the literature, the characteristic based schemes for artificial compressibility equations are con-
structed under the assumption of locally one-dimensional flow in certain directions. All extensions of characteristic based
upwind schemes to two and three dimensions ignore the multidimensional nature of flow and advance the solution by
‘‘splitting” that is to say, through a sequence of one-dimensional operators. For example, the CB scheme which is mentioned
above, exhibits substantial delays in terms of convergence in certain studies [23–25] without obeying the real physical nat-
ure of flow because using one-dimensional characteristic relations. To take into account the real multidimensional nature of
flow, it is necessary to devise methods which consider the actual directions in which information is propagated. Different
ideas have been proposed for the definition of multidimensional upwind schemes for compressible Euler equations whereas
in the case of incompressible flows, the first genuinely multidimensional characteristic based scheme has been introduced
by the authors recently [26]. The idea was tested in [26] for the cavity flow on a pure Cartesian grid and MCB showed very
good behaviour against CB and central schemes. In this paper, the MCB is extended for non-Cartesian grids and the solution
of two benchmark problems including flow in a channel with a backward facing step and two-dimensional steady and un-
steady flows past a circular cylinder are presented using it.

2. Governing equations

The Navier–Stokes equations for two-dimensional incompressible flows modified by the artificial compressibility can be
expressed as
ZZ

Vol:
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dV þ
I
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I
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Here, W is the vector of primitive variables, F, G and R, S are convective and viscous flux vectors, respectively. The artificial
compressibility parameter and Reynolds number are shown by b and Re, respectively. The above equations have been non-
dimensionalized based on the following scalings:
ðx; yÞ ¼ ðx�=l�; y�=l�Þ; t ¼ t�

l�=Uref
;

ðu; vÞ ¼ ðu�=Uref ; v�=UrefÞ; p ¼ p� � pref

qref U
2
ref

:
ð2Þ
The discretized form of Eq. (1) reads
Aij
oWij

ot
þ
X4

k¼1

ðFDy� GDxÞk ¼
X4

k¼1

ðRDy� SDxÞk; ð3Þ
where Aij is the cell area.

3. Characteristic structure for two-dimensional incompressible flows

Derivation of mathematical relations for characteristic structure of incompressible flows corrected by artificial compress-
ibility concept, has been presented in [26] for the first time by the authors.
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To derive the characteristic relations of incompressible flows, their corresponding ‘‘Euler equations” are considered [11].
These equations modified by artificial compressibility for deriving two-dimensional characteristic structures are
op
ot þ b ou

ox þ b ov
oy ¼ 0;

ou
ot þ u ou

ox þ v ou
oy þ

op
ox ¼ 0;

ov
ot þ u ov

ox þ v ov
oyþ

op
oy ¼ 0:

8>><>>: ð4Þ
To obtain characteristic structure of equations, a characteristic surface in the form of f ðx; y; tÞ ¼ 0 is assumed. Using the kine-
matics relations for relating the partial derivatives to exact derivatives corresponding to the assumed surface, one gets the
following system of equations [27,28]:
ft=b fx fy

fx w 0
fy 0 w

264
375 dp

du
dv

264
375 ¼ 0

0
0

264
375; ð5Þ
where the subscripts stand for the partial differentiation and w is defined as
w ¼ of
ot
þ u

of
ox
þ v

of
oy
: ð6Þ
For compatibility requirements of Eq. (5), the determinant of coefficient matrix is set to zero, hence,
w ¼ 0; w ¼ b
ft
ðf 2

x þ f 2
y Þ: ð7Þ
We assumed the pseudo-velocity vector bV ¼ ðu; v;1Þ and normal vector to characteristic surface n̂ ¼ ðcosu; sin u;ntÞ alike
compressible Euler equations [29], in which u shows the wave direction. Expressing Eqs. (7) in terms of vectors bV and n̂,
two types of characteristic surface corresponding to following relations are obtained:
bV � n̂ ¼ 0;bV � n̂ ¼ b

nt
;

(
ð8Þ
where nt ¼ ft=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x þ f 2

y

q
denotes the t-component of normal vector. By some mathematical operations, nt takes the following

forms:
nt ¼
�ðu cos uþ v sin uÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu cos uþ v sinuÞ2 þ 4b

q
2

¼ n1;n2: ð9Þ
Regarding the dual roots of second relation at Eq. (8) as a function of nt , similar to compressible Euler equations, dual char-
acteristic surfaces would exist. With straightforward mathematical operations it can be proven that the roots have always
different signs. This depicts the growth of zones of influence and dependence around the pseudo-streamlines. The projection
of normal vectors nt in the x–y plane lies inside a unit circle (Fig. 1). Two roots of Eq. (9) for nt denote the biplanes tangent to
characteristic surfaces passing through a certain point and producing the Mach cones. Also, Mach conoid is tangent to Mach
cone at each point passing through it. Along bicharacteristics, the characteristic surfaces are tangent to passing Mach cone. In
fact, the characteristic paths corresponding to the first equation of (8) demonstrate the pseudo-pathlines and the second one
Fig. 1. Envelope of normal vectors to characteristic surfaces.
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corresponds to the pseudo-acoustic waves propagating within the incompressible flow field. To specify the wave paths on a
Mach conoid, consider an assumed characteristic path on f ðx; y; tÞ ¼ 0. Taking df=dt ¼ 0 yields
of
ot
þ dx

dt
of
ox
þ dy

dt
of
oy
¼ 0: ð10Þ
From Eq. (10) one gets
nt þ ðdx=dtÞ cos uþ ðdy=dtÞ sin u ¼ 0: ð11Þ
To obtain the equations of characteristic paths on the Mach cone (virtual acoustic waves), the above equation and the second
relation of Eqs. (8) (indicator of pseudo-acoustic wave fronts) are combined as
nt þ ðdx=dtÞ cos uþ ðdy=dtÞ sin u ¼ 0;
nt þ u cos uþ v sinu ¼ b=nt:

�
ð12Þ
Combining the above relations with each other results in the following:
ðu� dx=dtÞ cos uþ ðv� dy=dtÞ sinu ¼ b=nt: ð13Þ
By the aid of Eq. (13) and considering the fact that planes tangent to characteristic surfaces form the Mach cone, the gener-
ators of this cone are (similar to compressible flow case such as [28])
dx
dt ¼ u� b

nt
cos u;

dy
dt ¼ v� b

nt
sin u;

(
ð14Þ
where u is wave angle. By considering Eq. (9), it is concluded that similar to compressible Euler equations, dual characteristic
surfaces would exist, so that their corresponding tangential planes construct two Mach cones which extend from a certain
point, namely domain of dependence and domain of influence (Fig. 2). Similar approaches for two-dimensional characteristic
structure of compressible Euler equations have been presented at Refs. [29–32].

As it is seen in Fig. 2, for any angle in the range 0 6 u 6 2p there exist two bicharacteristics. Unlike compressible Euler
equations, here the cross-section of Mach cone with x–y plane produce an ellipse (called Mach ellipse) having minor and
major axes parallel to the coordinate axes. The compatibility relations corresponding to pseudo-acoustic waves are obtained
from Eq. (5) by taking the second value of w from Eqs. (7), as
b
nt

duþ cos udp ¼ 0;
b
nt

dvþ sin udp ¼ 0:

(
ð15Þ
Eqs. (15) are valid for both nt ¼ n1;n2 which shows the governing compatibility relations along bicharacteristics.

4. Conventional CB scheme

The conventional CB scheme with second-order interpolation has been used in this paper for comparing with the new
proposed scheme. In this section, second-order CB scheme relations which have been used here are presented. It should
Fig. 2. Characteristic structure for incompressible flow defined by artificial compressibility equations.



K. Zamzamian, S.E. Razavi / Journal of Computational Physics 227 (2008) 8699–8713 8703
be noted that these relations are based on presented CB scheme in the literature such as [8,11–15]. If ðnx;ny;nzÞ denotes the
unit normal vector to common face of two cells, the relations for determining flow quantities on the common face is as fol-
lows [11–15]:
u ¼ fnx þ u0n2
y � v0nxny;

v ¼ fny þ v0n2
x � u0nynx;

p ¼ p1 � k1½ðu� u1Þnx þ ðv� v1Þny�;

8><>: ð16Þ
where
k0 ¼ unx þ vny;

k1 ¼ k0 þ C;

k2 ¼ k0 � C;

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
;

f ¼ 1
2C
½ðp1 � p2Þ þ nxðk1u1 � k2u2Þ þ nyðk1v1 � k2v2Þ�:

ð17Þ
Flow quantities at new time level obtained from the above equations on the locally one-dimensional characteristics are used
to calculate fluxes at the common face of two cells. The quantities at the prior time level are evaluated by upwind method
using the sign of characteristics as follows:
/j ¼ 1
2
½ð1þ signðkjÞÞ/L þ ð1� signðkjÞÞ/R�; ð18Þ
in which / is the typical name for flow quantities.
For second-order interpolation in this paper, following relations have been used:
/L ¼ /i þ 0:25/iþ1 � 0:25/i�1;

/R ¼ /iþ1 þ 0:25/i � 0:25/iþ2:
ð19Þ
5. Proposed numerical scheme

Proposed MCB scheme in [26] has been devised only for Cartesian grids by selection of four pseudo-acoustic waves. In this
paper, by using the same selection of four acoustic waves, the relations for calculation of convective fluxes on a general grid
is presented and the scheme is extended to non-Cartesian grids. By selection of four pseudo-acoustic waves aligned to grid
and by the aid of their corresponding compatibility relations, all of the cell interface values from previous time level are esti-
mated. The viscous fluxes are computed with conventional averaging method.

5.1. Convective fluxes

To evaluate the convective fluxes, four pseudo-acoustic waves with the projected propagation paths normal and parallel
to the cell interface are selected. According to Fig. 3, the intersection of local Mach cone corresponding to point M, on the two
cells interfaces, with x–y plane, demonstrates the real two-dimensional nature of information propagation; we called it
‘‘Mach ellipse”. As it is seen in Fig. 4, to take into account the physical behaviour of domain of influence for point M (or face
* in Figs. 3 and 4), four pseudo-waves corresponding to grid directions are selected and Eqs. (15) are discretized along them.
Fig. 3. Intersection of local Mach cone with previous time plane which produces ‘‘Mach ellipse”.



Fig. 4. MCB stencil for evaluating convective fluxes.

8704 K. Zamzamian, S.E. Razavi / Journal of Computational Physics 227 (2008) 8699–8713
It should be noted that in Fig. 4, u for any wave is the angle between x-axis and normal vector to presented directions cor-
responding to u1–u4. In order to evaluate the convective flux at face * in Fig. 4, two u1;u2 pseudo-acoustic waves corre-
sponding to n direction and two u3;u4 waves corresponding to t direction are selected. In which n is the normal vector
to common face between (i, j) and (i + 1, j) and t is normal to n (Fig. 4). This is an alternative, such as done for compressible
wave models introduced by Roe and others [33–35]. It is possible to select different numbers and directions for waves and
use their corresponding compatibility relations for evaluating interface values. The method of selection of waves in this pa-
per is explained below.

For face * of Fig. 4, for choosing u1, the intersection of the line between midpoint of face * and the center of cell (i + 1, j)
with Mach ellipse is considered. The value of u1 is determined by the tangent to Mach ellipse at this point. For wave u2 this
procedure is repeated by using cell (i, j) in stead of (i + 1, j). The wave angle u3 is considered at the intersection of Mach el-
lipse with the common face of cells (i, j + 1) and (i + 1, j + 1). Similarly, u4 is chosen at the intersection of Mach ellipse with
the face in common between cells (i, j � 1) and (i + 1, j � 1).

By using Eq. (15), four compatibility equations corresponding to u1;u2 are obtained as following:
b
nt1

duþ cos u1 dp ¼ 0; x-direction compatibility relation of u1 wave;
b

nt1
dvþ sin u1 dp ¼ 0; y-direction compatibility relation of u1 wave;

b
nt2

duþ cos u2 dp ¼ 0; x-direction compatibility relation of u2 wave;
b

nt2
dvþ sin u2 dp ¼ 0; y-direction compatibility relation of u2 wave;

8>>>>><>>>>>:
ð20Þ
where nt1 and nt2 obtained from Eq. (9) with respect to wave angles u1 or u2. It should be noted that in Eqs. (20), nt with
positive sign (from Eq. (9)) is used. Similar to Eqs. (20), one can write four compatibility relations corresponding to waves
u3 and u4. Discretizing Eqs. (20) along their corresponding paths, results in the following relations:
p� � p1 þ Aðu� � u1Þ ¼ 0;
p� � p1 þ Bðv� � v1Þ ¼ 0;
p� � p2 þ Cðu� � u2Þ ¼ 0;
p� � p2 þ Dðv� � v2Þ ¼ 0;

8>>><>>>: ð21Þ
where A;B;C;D can be obtained from Eqs. (9) and (20) as following:
A ¼ 2b= cos u1½�u1 cos u1 � v1 sinu1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 cos u1 þ v1 sinu1Þ

2 þ 4b
q

�
� �

;

B ¼ 2b= sinu1½�u1 cos u1 � v1 sin u1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 cos u1 þ v1 sin u1Þ

2 þ 4b
q

�
� �

;

C ¼ 2b= cos u2½�u2 cos u2 � v2 sinu2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 cos u2 þ v2 sinu2Þ

2 þ 4b
q

�
� �

;

D ¼ 2b= sin u2½�u2 cos u2 � v2 sinu2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 cos u2 þ v2 sinu2Þ

2 þ 4b
q

�
� �

:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð22Þ
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It should be noted that four similar relations can be written for the wave angles u3 and u4. In Eqs. (21), p�;u� and v� de-
note the flow variables at cell interface. At first, u� and p� are calculated from the first and third equations of Eqs. (21). The v�

and p� are determined using second and fourth equations. Two values of p� is then averaged and considered as final value. It
should be said that each equation includes flow information which is transported from time n to time n + 1, and any of them
cannot be neglected.

The calculated values for u� and v� from Eqs. (21) are projected on direction n and similarly the obtained values from cor-
responding u3 and u4 compatibility relations are projected on direction t in order to calculate the velocity components on
the cell interface (Fig. 4). Averaging values of obtained pressure from compatibility relations is considered as pressure value
on the cell interfaces. This procedure is explained below in detail.

Let us assume that u�1;2; v
�
1;2 and p�1;2 are the calculated values from Eqs. (21) corresponding to u1;u2 as explained above

and u�3;4; v
�
3;4 and p�3;4 are those corresponding to u3;u4 waves similarly. Now, as mentioned above, we project the vector

ðu�1;2; v�1;2Þ on direction n (Fig. 4) and call it ~Vn and similarly the projected vector ðu�3;4; v�3;4Þ on direction t is called ~Vt . Then,
the final velocity vector at two cells interface ð~V�Þ can be defined as ~V� ¼ ~Vn þ ~Vt and the final value of pressure at interface
ðp�Þ is taken as p� ¼ 1

2 ðp�1;2 þ p�3;4Þ.
The star values are computed from eight compatibility relations (corresponding to four pseudo-acoustic waves) with

respect to flow properties at points 1–4 (Figs. 3 and 4) in the previous time level for an explicit time integration. With
this idea, a genuinely multidimensional upwind scheme, called MCB (multidimensional characteristic based), has been
developed for evaluation of fluxes at the cell interfaces. In the first-order MCB scheme, flow properties at points 1, 2
are set to neighborhood cell values and for points 3, 4 interpolated from two cells containing assumed face. For sec-
ond-order MCB scheme, the values of point 1 interpolated from cells (i + 1, j) and (i + 2, j) and similarly for point 2 inter-
polated from cells (i, j) and (i � 1, j). Flow properties at point 3 are interpolated from cells (i, j + 1) and (i + 1, j + 1) and also
for point 4 is done similarly.

5.2. Viscous fluxes

To evaluate the viscous fluxes, one needs to compute flow variables derivatives at the cell interfaces as it is shown in
Fig. 5. For example, the first-order derivative at the side AB in Fig. 5 is determined using the secondary cell ANBM as
follows:
o/
ox

����
AB

¼ 1
S0

ZZ
S0

o/
ox

dS ¼ 1
S0

I
oS0

/dy ¼ 1
S0
X4

k¼1

/kDyk;

¼ 1
S0
½0:5ð/N þ /AÞDyAN þ 0:5ð/N þ /BÞDyNB þ 0:5ð/B þ /MÞDyBM þ 0:5ð/M þ /AÞDyMA�;

ð23Þ
where S0 denotes the area of AMBN. Also the /A and /B are found by averaging from the neighboring cells. Here, / is a generic
name standing for the flow variables.

5.3. Time integration

The spatially discretized equations form a set of coupled ordinary differential equations which are integrated in time by
an explicit fourth-order Runge–Kutta scheme. The discretized equations are in the following form:
oW
ot
þ Q ¼ 0: ð24Þ
After time discretization one gets
Fig. 5. Pattern for discretization of viscous terms.
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Wð0Þ ¼WðnÞ; Wð1Þ ¼Wð0Þ � Dt
2

Q ð0Þ;

Wð2Þ ¼Wð0Þ � Dt
2

Q ð1Þ; Wð3Þ ¼Wð0Þ � DtQ ð2Þ;

Wð4Þ ¼Wð0Þ � Dt
6
ðQ ð0Þ þ 2Q ð1Þ þ 2Q ð2Þ þ Q ð3ÞÞ;

ð25Þ
where Q contains the convective and viscous terms. The maximum time step is determined from
CFL ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ b

p
�Dt
Dl
: ð26Þ
Here, Dl is taken as the smallest distance between any cell center with its neighbor cell center.

6. Results and discussion

Extension of proposed MCB scheme in [26] to non-Cartesian grids has been performed here and two well-known bench-
mark problems including flow in a channel with a backward facing step and two-dimensional steady and unsteady flows
past a circular cylinder are simulated to show its ability and robustness. Incompressible flow in a channel with a backward
facing step is an example with grids which clustered inherently at vertical direction (non-Cartesian). In the case of flow past
a circular cylinder, an O mesh has been used which is also non-Cartesian and in addition the ability of MCB scheme in un-
steady flow simulations has been tested by calculating the flow field at Re > 40.

6.1. Incompressible flow in channel with a backward facing step

In this section, the flow over a backward facing step has been investigated using second-order MCB scheme. In this case,
the grid is clustered inherently at x-direction. According to experimental results of Denham and Patrick [36], we have performed
computations for a backward facing step with inlet to channel expansion ratio 2:3 at Re = 73 and Re = 229. The Reynolds number
is defined based on the step height and average velocity at the inlet profile. For Re = 73, the downstream channel length is
considered as 30 step heights and for Re = 229 it is equal to 60 step heights. Applied boundary conditions on solid walls are
no-slip condition and normal momentum equation for pressure calculation. At inlet boundary, the velocity components are
set by inlet velocity profile values while interpolating the pressure. At outlet boundary, the pressure is fixed and velocity
components are extrapolated. It should be noted that for Re = 73 the parabolic velocity profile at channel inlet is applied
while for Re = 229 the experimental inlet profile differs significantly from the parabolic one and for this case, inlet boundary
condition is generated by fitting a curve using the experimental inlet data [36].

Results obtained for u-velocity profile at some sections using second-order CB [8], second-order MCB and central
scheme with artificial dissipation in comparison with experimental results of Denham and Patrick [36] are shown in
Fig. 6 for the case of Re = 73 (x = 0 is the section of channel on the step). The computations have been performed on
a grid containing 9 � 24 nodes in the inlet section and 81 � 36 nodes in the main channel. As it is shown in Fig. 6, re-
sults obtained by second-order MCB and central scheme approximately have the same accuracy while for second-order
CB scheme significant deviation from experimental data is observed. In Fig. 7 comparison of obtained results using sec-
ond-order MCB and CB schemes with respect to experimental data for Re = 229 is presented for some sections of chan-
nel. For this case, a grid containing 8 � 30 nodes in the inlet section and 112 � 45 nodes in the main channel has been
used. The downstream channel length is considered as 60 step heights. It should be noted that for this case, the central
scheme shows remarkable instabilities and comparisons are made only for second-order MCB and CB schemes. As it is
Comparison of results for u-velocity profile at some sections obtained by the central, second-order CB and second-order MCB schemes at Re = 73.



Fig. 7. Comparison of results for u-velocity profile at some sections obtained by second-order CB and MCB schemes at Re = 229.
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observed in Fig. 7, second-order MCB provides more accurate results than second-order CB scheme on the same grid in
this case.

Convergence rates of three mentioned schemes have been tested for various grid size and typical cases of them are shown
in Figs. 8 and 9 for Re = 73 and Re = 229. In Fig. 8, convergence rates for three schemes are presented for Re = 73 at two dif-
ferent grids. Considered grids are a grid containing 9 � 24 nodes in the inlet section and 81 � 36 nodes in the main channel
and another one contains 12 � 36 nodes in inlet section and 108 � 54 nodes in main channel. For Re = 229, the comparison
between second-order CB and MCB schemes in terms of convergence is presented at Fig. 9 for a grid containing 8 � 30 nodes
in the inlet section and 112 � 45 nodes in the main channel. It should be noted that in this case, the downstream channel
Fig. 8. Comparison of convergence histories for three studied schemes for backward step problem at Re = 73 for the two types of grid size.



Fig. 9. Comparison of convergence histories for second-order CB and MCB schemes for backward step problem at Re = 229 and a grid containing 8 � 30
nodes in the inlet section and 112 � 45 nodes in the main channel.
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length is considered as 60 step heights. By considering Figs. 8 and 9 superiority of MCB scheme in the case of convergence
behaviour in the backward facing step test case is obvious.

Fig. 10 shows streamlines for Re = 73 and 229 obtained by second-order MCB scheme. For comparing the results of MCB
with experimental data of Denham and Patrick [36] in details, solution of fine grid is presented in Fig. 11. Grids used in this
case are a grid containing 18 � 90 nodes in the inlet section and 162 � 135 nodes in the main channel for Re = 73 and a grid
containing 24 � 90 nodes in the inlet section and 336 � 135 nodes in the main channel for Re = 229.

6.2. Incompressible flow past a circular cylinder

To verify the ability of MCB scheme on non-Cartesian grids, incompressible steady and unsteady flow past a circular cyl-
inder is considered here along with an O grid clustered near solid wall (Fig. 12). The Reynolds number is defined based on the
free stream uniform inlet velocity and the cylinder diameter. At an inlet boundary, the velocity components are set to free-
stream values while interpolating the pressure. At an outlet boundary, the pressure is fixed and velocity components are
extrapolated.

6.2.1. Steady flow past a circular cylinder
The first case is incompressible flow past a circular cylinder in steady regime in which Re 6 40. Fig. 13 presents the results

obtained by the second-order MCB scheme in comparison with conventional second-order CB [8] and central schemes for
wall spanwise vorticity along the cylinder surface at Re = 40 on 80 � 80 grid. As it is seen, the second-order MCB scheme
again provides more accurate results in this case. The convergence rate of three mentioned schemes is studied at different
low Reynolds numbers and the MCB scheme shows remarkable reduction and distinction in all of them. As a typical case,
convergence rates are presented in Fig. 14 for Re = 40 on 80 � 80 grid. Table 1 provides the comparison of drag coefficient
predicted by MCB at different Reynolds numbers. As it is observed, the results are in good agreement with the other reported
Fig. 10. Streamlines of separated flow near the expansion at Re = 73 and 229.



Fig. 11. Comparison of obtained velocity distributions with experimental data [36] for Re = 73 and 229.

Fig. 12. O shape grid by clustering near the solid wall.
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solutions. It is shown in Fig. 15 that the pressure coefficient at Re = 40 obtained using MCB scheme agrees well with that of
Choi et al. [37].

6.2.2. Transient flow past a circular cylinder
In this section, the results obtained from the second-order MCB scheme for transient incompressible flow past a circular

cylinder are presented. Fig. 16 shows unsteady streamlines variations at different times for Re = 100. As it is seen, the present
method clearly captures vortex shedding behind the cylinder. In Fig. 17 variation of drag coefficient versus Reynolds number
in the unsteady flow regime is shown comparing to the other results in the literature. Fig. 18 shows instantaneous pressure
and velocity components contours at Re = 100.



Fig. 13. Comparison of obtained results for wall spanwise vorticity along the cylinder surface, Re = 40 and 80 � 80 grid. (see above-mentioned references
for further information.)

Fig. 14. Comparison of convergence histories for the flow past a circular cylinder, Re = 40 and 80 � 80 grid.

Table 1
Comparison of mean drag coefficient for laminar steady flow past a circular cylinder at low Reynolds numbers

Re References Drag coefficient

10 Dennis and Chang [38] 2.85
Takami and Keller [39] 2.80
Tuann and Olson [40] 3.18
Ding et al. [41] 3.07
Nithiarasu et al. [42] 2.85
Present (MCB result) 2.98

20 Dennis and Chang [38] 2.05
Takami and Keller [39] 2.01
Tuann and Olson [40] 2.25
Ding et al. [41] 2.18
Nithiarasu et al. [42] 2.06
Present (MCB result) 2.03

40 Dennis and Chang [38] 1.522
Takami and Keller [39] 1.536
Tuann and Olson [40] 1.675
Ding et al. [41] 1.713
Nithiarasu et al. [42] 1.564
Present (MCB result) 1.55
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Fig. 15. Comparison of wall pressure coefficient along the cylinder surface at Re = 40 with Choi et al. [37].

Fig. 16. Unsteady streamlines at different times for Re = 100.

Fig. 17. Variation of drag coefficient versus Reynolds number. (see above-mentioned references for further information.)
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Fig. 18. Instantaneous pressure and velocity contours at Re = 100.
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7. Conclusions

Recently proposed genuinely multidimensional characteristic based upwind scheme for incompressible flows (MCB) by
authors has been extended in this paper for non-Cartesian grids and applied to other case studies. The original version of
MCB scheme was implemented to Cartesian grids and has been tested only for cavity flow. By using this idea, an algorithm
for calculation of convective fluxes by MCB scheme on general meshes was presented in this paper. By selecting four acoustic
waves, the relations for calculation of convective fluxes on a general grid were presented and the scheme was extended to
non-Cartesian grids. By selection of four pseudo-acoustic waves aligned to grid and by the aid of their corresponding com-
patibility relations, all of the cell interface values from previous time level can be estimated. Two well-known benchmark
problems including flow in a channel with a backward facing step and two-dimensional steady and unsteady flows past a
circular cylinder were used as test cases. For the flow over backward facing step, obtained results were compared against
well-known experimental data and the results show high accuracy of second-order MCB scheme and faster convergence rate.
In the case of flow over circular cylinder, the flow at steady and transient regimes is investigated by MCB scheme. Again, the
results obtained by second-order MCB are compared to the other results in the literature and show good agreement with
them. The remarkable advantage of MCB scheme lies in fast convergence rate with respect to other studied schemes, noting
the slow convergence of CB reported in the literature. Another advantage of MCB is its stable solutions and also there is no
need to add artificial viscosity even at high Reynolds numbers due to its inherent upwinding and characteristic based nature.
It is concluded that, the genuinely multidimensional characteristic based (MCB) scheme, is robust and powerful for modeling
incompressible viscous flows for achieving the high accuracy and remarkable advantage in convergence rate with respect to
conventional characteristic based schemes.
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